
Bias-Variance Trade-off in Physics-Informed Neural Networks with
Randomized Smoothing for High-Dimensional PDEs

Zheyuan Hu* † Zhouhao Yang* † Yezhen Wang* † George Em Karniadakis‡ §

Kenji Kawaguchi†

Abstract

Physics-Informed Neural Networks (PINNs) have triggered a paradigm shift in scientific computing, leveraging
mesh-free properties and robust approximation capabilities. While proving effective for low-dimensional partial
differential equations (PDEs), the computational cost of PINNs remains a hurdle in high-dimensional scenarios. This
is particularly pronounced when computing high-order and high-dimensional derivatives in the physics-informed loss.
Randomized Smoothing PINN (RS-PINN) introduces Gaussian noise for stochastic smoothing of the original neural
net model, enabling the use of Monte Carlo methods for derivative approximation, which eliminates the need for costly
automatic differentiation. Despite its computational efficiency, especially in the approximation of high-dimensional
derivatives, RS-PINN introduces biases in both loss and gradients, negatively impacting convergence, especially
when coupled with stochastic gradient descent (SGD) algorithms. We present a comprehensive analysis of biases
in RS-PINN, attributing them to the nonlinearity of the Mean Squared Error (MSE) loss as well as the intrinsic
nonlinearity of the PDE itself. We propose tailored bias correction techniques, delineating their application based
on the order of PDE nonlinearity. The derivation of an unbiased RS-PINN allows for a detailed examination of its
advantages and disadvantages compared to the biased version. Specifically, the biased version has a lower variance
and runs faster than the unbiased version, but it is less accurate due to the bias. To optimize the bias-variance
trade-off, we combine the two approaches in a hybrid method that balances the rapid convergence of the biased
version with the high accuracy of the unbiased version. In addition to methodological contributions, we present
an enhanced implementation of RS-PINN. Extensive experiments on diverse high-dimensional PDEs, including
Fokker-Planck, Hamilton-Jacobi-Bellman (HJB), viscous Burgers’, Allen-Cahn, and Sine-Gordon equations, illustrate
the bias-variance trade-off and highlight the effectiveness of the hybrid RS-PINN. Empirical guidelines are provided
for selecting biased, unbiased, or hybrid versions, depending on the dimensionality and nonlinearity of the specific
PDE problem.

1 Introduction
Physics-Informed Neural Networks (PINNs) [34] have revolutionized the scientific computing field thanks to their
mesh-free properties, robust approximation, rapid convergence, and strong generalization capabilities [21, 24, 26].
Although PINNs have proven effective in solving many low-dimensional PDEs, the computational cost remains
significant in high-dimensional scenarios. This is particularly evident when calculating high-order, high-dimensional
derivatives of the neural network model concerning its inputs, especially in the context of computing the physics-
informed loss. The intrinsic value of unlocking the potential of PINN lies in their mesh-free training, which allows them
to overcome the curse-of-dimensionality. The capability to address high-dimensional PDE problems holds immense
significance, offering substantial value in addressing a myriad of practical applications, e.g., the Hamilton-Jacobi-
Bellman (HJB) equation in control theory, the Black-Scholes equation in mathematical finance, and the Schrödinger
equation in quantum physics.

Among the variants of PINNs, the randomized smoothing PINN is a promising approach, see [14]. Specifically,
Randomized Smoothing PINN (RS-PINN) [14] introduces Gaussian noise for stochastic smoothing of a neural network
model, allowing its derivatives with respect to inputs to be expressed as expectations. This enables the model and its
derivatives to be approximated using Monte Carlo methods, circumventing the challenges associated with high-order,
high-dimensional derivatives, where computation by automatic differentiation can be prohibitively expensive. While
RS-PINN presents an efficient backpropagation-free method for PINN parameterization and training, its reliance
on Monte Carlo to approximate expectations introduces biases in both its loss and gradients. Given that RS-PINNs

*Equal Contribution
†Department of Computer Science, National University of Singapore, Singapore, 119077 (e0792494@u.nus.edu,kenji@nus.edu.sg)
‡Division of Applied Mathematics, Brown University, Providence, RI 02912, USA (george karniadakis@brown.edu)
§Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, Richland, WA, United States

1

mailto:e0792494@u.nus.edu
mailto:kenji@nus.edu.sg
mailto:george\protect _karniadakis@brown.edu

are commonly coupled with stochastic gradient descent (SGD) algorithms, such as Adam [27], the unbiasedness of
stochastic gradients is crucial for the convergence of RS-PINNs. In fact, the unbiasedness of stochastic gradients
constitutes the fundamental assumption for the convergence of SGD. This phenomenon hinders the model from
converging to the optimal point, making RS-PINNs perform much worse than vanilla PINNs based on automatic
differentiation.

In this paper, we conduct an in-depth analysis of the sources of bias in RS-PINNs, stemming from the nonlinearity
of the commonly used Mean Squared Error (MSE) loss in PINN as well as the inherent nonlinearity of the PDE
itself. We demonstrate how to correct these biases separately and extend our formulation to the specific order of PDE
nonlinearity. Specifically, for nonlinear PDEs with various orders, we illustrate how their biases can be corrected
differently. Overall, the essence of bias correction lies in the re-sampling using distinct Gaussian random samples.
After derivation of the unbiased version of RS-PINN, we analyze the advantages and disadvantages of biased and
unbiased versions. To this end, the biased version exhibits faster running speed, while under the same sample size,
the unbiased version tends to have a larger variance, leading to the exploration of the bias-variance trade-off. We
discuss various scenarios where the unbiased/biased version might perform better and propose a combination of both
to achieve convergence speeds comparable to the biased version and the accuracy of the unbiased version. Concretely,
in the optimization’s initial stages, we use the biased version to rapidly converge the model to a reasonably good point.
Once the loss of the biased version ceases to decrease, we transition to the unbiased version for fine-tuning. In addition
to our methodological contributions, we also present an improved implementation of RS-PINN.

Finally, through extensive experiments on several high-dimensional PDEs, including the linear Fokker-Planck PDE,
the nonlinear HJB equation, the viscous Burgers’ equation, the Allen-Cahn equation, and the Sine-Gordon equation
in different high-dimensional scenarios, we illustrate the bias-variance trade-off and how the hybrid version adeptly
assimilates the strengths and weaknesses of both versions to achieve optimal results. Through experiments, we also
empirically provide guidelines for the usage of biased, unbiased, and hybrid versions, which are dependent on the
dimensionality as well as the nonlinearity of the PDE problem.

The rest of this paper is arranged as follows. We discuss related work in Section 2. We provide an introduction
to RS-PINNs in Section 3. Then, we introduce the bias correction techniques and our main algorithms in Section 4.
Computational experiments are conducted in Section 5, and we conclude the paper in Section 6.

2 Related Work
Randomized Smoothing. Randomized smoothing was initially proposed to tackle the adversarial robustness problem
via certified robustness in neural networks, especially in image classification [10, 28]. Later, it was extended to
train PINNs without stacked backpropagation [14], which avoids the huge computational cost, especially in high-
dimensional PDEs. The generalization property of the RS-PINN can be understood via the information bottleneck
theory [25]. It is expected to improve the generalization property by reducing the mutual information between the
input and the hidden layer via the additionally injected noise. More recently, randomized smoothing has also been
applied to backpropagation-free federated learning [11].

Backpropagation-Free PINNs. In [8], the authors proposed a coupled-automatic-numerical PINN (CAN-PINN),
which combines automatic differentiation (AD) and numerical differentiation (ND) to become both accurate like AD
and efficient like ND. The authors of [30] proposed a hybrid finite difference PINN (HFD-PINN), which adopts AD
for smooth scales and a weighted essentially non-oscillatory (WENO) scheme to capture discontinuity. Fractional
PINN (fPINN) [32] was proposed to solve fractional advection-diffusion equations, where the ND scheme is adopted
for fractional differentiation. The Deep Galerkin method (DGM) [36] proposed a Monte-Carlo-based algorithm for
fast second-order derivatives calculation. Taylor mode AD [6] was proposed to mitigate the exponential computational
burden with increasing order of derivatives, which is currently available in the Jax framework.

High-Dimensional PDE Solver. In the broader field of high-dimensional PDE solvers, numerous attempts have
been made. The authors of [37] proved the importance of L∞ loss in solving high-dimensional Hamilton-Jacobi-
Bellman equations. Separable PINN [9] adopts a separable structure, enabling the residual point to be a tensor product
of per-dimension points, thereby expanding the batch size. However, for problems exceeding ten dimensions, memory
usage becomes a significant concern. DeepBSDE [12, 13] and its extensions [2, 7, 15, 18, 22] are based on the
classical BSDE interpretation of certain high-dimensional parabolic PDEs, and deep learning models are employed
to approximate the unknowns in the formulation. The deep splitting method [1] integrates the classical splitting
method with deep learning. FBSNN [33] connects high-dimensional parabolic PDEs with forward-backward stochastic
differential equations and adopts deep learning for approximating the unknown solution. The multilevel Picard methods
[3, 4, 5, 19, 20] are a nonlinear extension of Monte Carlo that can provably solve parabolic PDEs under certain
constraints. The authors of [38, 39] proposed tensor neural networks, which adopt a separable structure for cheap
numerical integration in solving high-dimensional Schrödinger equations. More recently, SDGD [17] was proposed to
sample the dimension in PDEs for scaling up and speeding up high-dimensional PINNs.

2

Physics-Informed Machine Learning. The algorithmic concepts in this paper are based on Physics-Informed
Machine Learning [23], especially PINNs [34], which utilize neural networks as surrogate models for PDE solution
approximation and optimize the boundary and residual losses, which are theoretically grounded to help the neural
network model discover the correct solution [16, 31, 35].

3 Preliminary

3.1 Physics-Informed Neural Networks (PINNs)
This paper focuses on solving the following partial differential equations (PDEs) defined on a domain Ω ⊂ Rd:

Bu(x) = B(x) on Γ, Lu(x) = g(x) in Ω, (1)

where L and B are the differential operators for the residual condition in Ω and for the boundary/initial condition
on Γ. PINNs [34] is a neural network-based PDE solver via minimizing the following boundary and residual loss
functions. Concretely, given the boundary points {xb,i}nb

i=1 ⊂ Γ and the residual points {xr,i}nr
i=1 ⊂ Ω, the PINN loss

is composed of the mean square error in the residual and on the boundary:

L(θ) = λbLb(θ) + λrLr(θ)

=
λb

nb

nb∑
i=1

|Buθ(xb,i)−B(xb,i)|2 +
λr

nr

nr∑
i=1

|Luθ(xr,i)− g(xr,i)|2,
(2)

where λb is the weight for the boundary loss while λr is that for the residual loss.

3.2 Randomized Smoothing PINNs
He et al. [14] proposed the randomly smoothed neural network structure for backpropagation-free PINN computation:

u(x; θ) = Eδ∼N (0,σ2I)f(x+ δ; θ), (3)

where f(x; θ) is a vanilla neural network parameterized by θ; u(x; θ) is the corresponding smoothed version of the
network f(x; θ) serving as the surrogate model in PINNs.

The derivative of u(x; θ) can be analytically computed without backpropagation. For instance, its gradient,
Laplacian, and Hessian with respect to the input x can be written as follows (see He et al. [14]):

∇xu(x; θ) = Eδ∼N (0,σ2I)

[
δ

σ2
f(x+ δ; θ)

]
. (4)

∆xu(x; θ) = Eδ∼N (0,σ2I)

[
∥δ∥2 − σ2d

σ4
f(x+ δ; θ)

]
. (5)

Hessxu(x; θ) = Eδ∼N (0,σ2I)

[
δδT − σ2d

σ4
f(x+ δ; θ)

]
. (6)

Here ∇x,∆x,Hessianx are the gradient, Laplacian, and Hessian operators with respect to the input x, respectively.
All of them can be simulated by Monte Carlo sampling for the expectation estimator to calculate the derivatives without
the expensive automatic differentiation, and then the PINN loss is used to solve the PDE.

He et al. [14] also introduced a corresponding variance reduction form, as the entire derivative estimation involves
Monte Carlo estimation of expectations, which contains certain variance. Specifically, the variance reduction is related
to control variate and antithetic variable method, whose ultimate forms are similar to the numerical differentiation:

∇xu(x; θ) = Eδ∼N (0,σ2I)

[
δ

2σ2
(f(x+ δ; θ)− f(x− δ; θ))

]
. (7)

∆xu(x; θ) = Eδ∼N (0,σ2I)

[
∥δ∥2 − σ2d

2σ4
(f(x+ δ; θ) + f(x− δ; θ)− 2f(x; θ))

]
. (8)

Hessxu(x; θ) = Eδ∼N (0,σ2I)

[
δδT − σ2d

2σ4
(f(x+ δ; θ) + f(x− δ; θ)− 2f(x; θ))

]
. (9)

The essence of the randomized smoothing PINN lies in transforming the derivatives and model inference into
an expectation. Especially in high-dimensional scenarios, this approach is highly cost-effective since computing

3

the Hessian and other high-order derivatives of a complicated neural network in high dimensions is prohibitively
expensive. The Monte Carlo sampling method for estimating expectations serves as a powerful tool to combat the
curse-of-dimensionality, especially when combined with the mesh-free PINN approach. This synergy positions it as a
formidable tool for addressing high-dimensional PDEs.

Specifically, given a sample size of K ∈ Z+ in Monte Carlo, we can approximate the expectations above as
follows.

û(x; θ; δ) :=
1

K

K∑
i=1

f(x+ δi; θ) ≈ Eδ∼N (0,σ2I)f(x+ δ; θ) = u(x; θ), (10)

where δ = {δi}Ki=1 are K i.i.d. Gaussian samples and û(x; θ; δ) is the Monte-Carlo-based estimation of the exact
u(x; δ) on the point x. Similarly, for the gradient, Laplacian, and Hessian, we have the following Monte-Carlo-based
estimators, which are then substituted into the PINN loss for optimization:

∇̂xu(x; θ; δ) :=
1

K

K∑
i=1

[
δ

2σ2
(f(x+ δi; θ)− f(x− δi; θ))

]
. (11)

∆̂xu(x; θ; δ) =
1

K

K∑
i=1

[
∥δi∥2 − σ2d

2σ4
(f(x+ δi; θ) + f(x− δi; θ)− 2f(x; θ))

]
. (12)

Ĥessxu(x; θ; δ) =
1

K

K∑
i=1

[
δiδ

T
i − σ2d

2σ4
(f(x+ δi; θ) + f(x− δi; θ)− 2f(x; θ))

]
. (13)

4 Proposed Method
In this section, we show that the original formulation of randomized smoothing PINN leads to a biased gradient. We
further show that bias comes from two contributions: the nonlinear mean square error loss function in the PINN loss
and the nonlinearity of PDE itself. These nonlinearities disrupt the linearity of the mathematical expectation in the
RS-PINN for model inference and the model’s derivatives in the PINN loss, thereby introducing bias. Then, we correct
these biases for better performance, demonstrating how the two biases affect PINN’s performance differently and
showing that the biased (unbiased) version has a lower (higher) gradient variance and that the biased version runs faster
than the unbiased one per epoch. Hence, we finally combine them to propose a hybrid version, which runs as fast as
the biased version and as accurate as the unbiased one.

4.1 Bias from the Mean Square Error Loss Function
In this subsection, we illustrate the bias of RS-PINN’s loss function and its gradient with respect to model parameters
induced by the nonlinear mean square error loss function in the PINN loss, since its nonlinearity violates the linearity
of expectation that guarantees unbiasedness.

Without loss of generality, since the inference and the derivatives of the surrogate model u(x; θ) can all be written
as an expectations, let us use the boundary loss to demonstrate the first bias from the nonlinearity of the mean square
error loss function, which includes the following expectation related to model inference:

u(x; θ) = Eδ∼N (0,σ2I)f(x+ δ; θ). (14)

The boundary loss on a boundary point x is:

Lb(θ) = (u(x; θ)− g(x))
2
=
(
Eδ∼N (0,σ2I)f(x+ δ; θ)− g(x)

)2
, (15)

where g(x) is the given boundary condition. He et al. [14] approximate the boundary loss by Monte Carlo:

L
(0)
b (θ) = (û(x; θ; δ)− g(x))

2
=

(
1

K

K∑
i=1

f(x+ δi; θ)− g(x)

)2

. (16)

Although û(x; θ; δ) is an unbiased estimator of u(x; θ), due to the nonlinear quadratic form of the mean square error
loss function, the expectation of the loss function L

(0)
b (θ) is not the true loss Lb(θ):

Eδ

[
L
(0)
b (θ)

]
= Eδ

(1

K

K∑
i=1

f(x+ δi; θ)− g(x)

)2
 ̸= Lb(θ) =

(
Eδ∼N (0,σ2I)f(x+ δ; θ)− g(x)

)2
, (17)

4

i.e., the formulation of the loss function by He et al. [14] is biased since the nonlinear mean square error loss function
violates the linearity of mathematical expectation.

To correct the bias, we just need to sample independently two groups of Gaussian variables δi and δ′i and compute
the following debiased loss function:

L
(1)
b (θ) = [û(x; θ; δ′)− g(x)] [û(x; θ; δ)− g(x)] =

[
1

K

K∑
i=1

f(x+ δ′i; θ)− g(x)

][
1

K

K∑
i=1

f(x+ δi; θ)− g(x)

]
,

(18)
where δi ∼ N (0, σ2I) and δ′i ∼ N (0, σ2I) are independent. Then, the derived loss function and its gradient
with respect to θ for optimization are all unbiased, since we eliminate the bias introduced by nonlinearity through
re-sampling, which breaks down the nonlinearity. This is summarized in the following theorem.

Theorem 4.1. The loss L(1)
b (θ) and its gradient with respect to θ are unbiased estimators for the exact loss Lb(θ) and

its gradient with respect to θ, respectively, i.e.,

Eδ,δ′

[
L
(1)
b (θ)

]
= Lb(θ), Eδ,δ′

[
∂L

(1)
b (θ)

∂θ

]
=

∂Lb(θ)

∂θ
. (19)

Proof. The proof is presented in Appendix A

Our previous discussion on boundary loss can be extended to the case of residual loss in linear PDEs. Due to the
linearity of the mathematical expectation, the residual part of a linear PDE preserves the unbiased nature of Monte
Carlo sampling. Therefore, the sole source of bias stems from the nonlinearity of the mean square error loss function.

Taking everything together, in this subsection, we have introduced a debiasing method for the loss function of linear
PDEs in RS-PINN. The essence lies in eliminating the nonlinearity in the mean square error loss function through
resampling, thereby leveraging the linearity of mathematical expectation to ensure unbiasedness. However, we note
that this does not hold true for nonlinear PDEs whose residual parts violate the linearity of expectation. Below, we
elucidate the additional bias introduced by the nonlinearity of PDEs.

4.2 Bias from the PDE Nonlinearity
In this subsection, we illustrate the bias of RS-PINN induced by the PDE nonlinearity that violates the linearity of
expectation. Since nonlinearity differs in various PDEs, we commence with a brief illustration of the HJB equation.
Subsequently, considering the diverse orders of nonlinearity inherent in distinct nonlinear equations, we extend our
methodology to various and more general scenarios.

We take the Hamilton-Jacobi-Bellman (HJB) equation in He et al. [14] as an example, whose nonlinear PDE part is

ut = ∆xu− ∥∇xu(x)∥2. (20)

To simplify the discussion and without the loss of generality since the linear PDE case has been tackled in the previous
subsection, we ignore the linear term of the HJB equation and only consider the nonlinear term ∥∇xu(x)∥2. The true
residual loss on a residual point x is:

Lr(θ) =
(
∥∇xu(x; θ)∥2 − g(x)

)2
(21)

He et al. [14] approximate the boundary loss by Monte Carlo:

L(0)
r (θ) =

(∥∥∥∇̂xu(x; θ; δ)
∥∥∥2 − g(x)

)2

, (22)

where ∇̂xu(x; θ; δ) defined in equation (11) is an unbiased estimator of u(x; θ) based on Monte-Carlo sampling. The
original formulation of He et al. [14] is biased due to the nonlinearity of the mean square error loss function. However,
our previous approach for linear PDEs is still biased due to the quadratic term ∥ · ∥2 term in the loss due to the PDE
nonlinearity, which violates the linearity of mathematical expectation. Concretely, the loss correcting the bias from the
forward and backward passes is

L(1)
r (θ) =

(∥∥∥∇̂xu(x; θ; δ)
∥∥∥2 − g(x)

)
×
(∥∥∥∇̂xu(x; θ; δ

′)
∥∥∥2 − g(x)

)
. (23)

Although û(x; θ; δ) is an unbiased estimator of u(x; θ), an additional bias comes from the nonlinear term ∥ · ∥2 due to
the PDE nonlinearity ∥∇u∥2.

5

We can correct the bias via sampling the quadratic terms in ∥f∥2 = ⟨f, f⟩ independently, using four groups of
Gaussian samples δ, δ′, δ′′, δ′′′:

L(2)
r (θ) =

(〈
∇̂xu(x; θ; δ), ∇̂xu(x; θ; δ

′)
〉
− g(x)

)
×
(〈

∇̂xu(x; θ; δ
′′), ∇̂xu(x; θ; δ

′′′)
〉
− g(x)

)
. (24)

Then, the derived loss function and its gradient with respect to θ for optimization are all unbiased.

Theorem 4.2. The loss L(2)
r (θ) and its gradient with respect to θ are unbiased estimators for the loss Lr(θ) and its

gradient with respect to θ, respectively, i.e.,

Eδ,δ′,δ′′,δ′′′

[
L(2)
r (θ)

]
= Lr(θ), Eδ,δ′,δ′′,δ′′′

[
∂

∂θ
L(2)
r (θ)

]
=

∂

∂θ
Lr(θ). (25)

Proof. The proof is presented in Appendix A.

So far, we present the bias correction technique for one nonlinear PDE, namely the HJB equation, where we correct
the biases from the nonlinear mean square error loss function and the PDE nonlinearity. We will discuss general
nonlinear PDEs in the next subsection.

4.3 General Nonlinear PDEs: Order of Nonlinearity
This subsection extends our bias correction technique to general nonlinear PDEs based on the concept of nonlinearity
order. Specifically, our idea of bias correction can be easily extended to the general nth order of nonlinearity. In the
context of nonlinear PDEs, the “order of nonlinearity” refers to the highest power of the dependent function u or its
derivatives in the nonlinear terms of the equation. Nonlinearity in PDEs arises when the equation involves terms that
are not proportional and linear to the dependent function or its derivatives. The order of nonlinearity is determined
by the highest power of these nonlinear terms. Intuitively, for the nth order nonlinear case, we just need to sample
the n terms independently using n different groups of Gaussian variables to break down the nonlinearity and to make
the loss function unbiased. Below are some examples of the nonlinearity order and their corresponding biased and
unbiased versions of RS-PINN, whose detailed explanation is further provided in Appendix B.

• HJB equation. The previous HJB equation given by ut = ∆xu− ∥∇xu(x)∥2, which has a nonlinearity order
of two due to the ∥∇xu∥2 term.

• Allen-Cahn (AC) equation is given by ut = ∆xu+ u− u3, and its nonlinearity stems from the term u3, which
is a cubic function. Therefore, the nonlinearity order of the AC equation is three. During the model training, we
must independently sample the three u terms in u3 = u · u · u for unbiased gradients.

• Viscous Burgers’ equation is given by ut + u
∑d

i=1 uxi
− ν∆xu(x, t) = 0, and its nonlinearity stems from

the term u
∑d

i=1 uxi
. Therefore, the nonlinearity order of the viscous Burgers’ PDE is two. During the model

training, we must independently sample the u and ∇xu for unbiased gradients.

• Sine-Gordon equation. However, our method cannot deal with nonlinear like sin(u) in the Sine-Gorden PDE
ut = ∆xu+ sin(u). Fortunately, we can increase the sample size K in the Monte Carlo to minimize the bias.
Furthermore, correcting the bias from the nonlinearity mean square error loss does suffice for the Sine-Gordon
equation, i.e., we can still correct the bias from the nonlinear mean square error loss to improve over the original
formulation in He et al. [14], which is actually sufficient to obtain a low error in high dimensions.

4.4 Bias-Variance Trade-off and the Hybrid Method
In this subsection, we discuss the bias-variance trade-off in RS-PINN and propose a hybrid version to incorporate the
advantages of both methods to achieve the best performance. We also provide guidelines for explaining when the
biased/unbiased version can outperform the other, facilitating the choice of the algorithm in practical scenarios.

The unbiased version employs multiple sets of independent Gaussian samples to calculate the loss, making it slower
with larger gradient variances due to more sampling and more randomness; however, it provides unbiased gradients.
Specifically, while the biased version from He et al. [14] requires only one set of Gaussian variables, correcting the
bias from the nonlinear MSE loss functions doubles the number of independent Gaussian variable sets while correcting
the additional bias from the PDE nonlinearity further increases the number of samples depending on the nonlinearity
order of the PDE. For instance, a totally unbiased version of the HJB equation and the viscous Burgers’ equation
requires four sets, while that of the Allen-Cahn equation requires six sets.

6

In contrast, the biased version requires only one set of samples, resulting in faster running speed per iteration
and smaller gradient variances, but the gradients are biased. Hence, we propose a hybrid approach that combines the
strengths of both methods. In the initial optimization stages, we use the biased version to converge the model rapidly to
a reasonably good point. Once the loss of the biased version ceases to decrease, we transition to the unbiased version
for fine-tuning.

This theoretical analysis sheds light on the practical choice of algorithms in computational experiments. In higher
dimensions, in the unbiased version by sampling more Gaussians will lead to a much larger variance. So, it is expected
that the unbiased version will have lower variance in lower dimensions and thus have better performance than the biased
one. On the other hand, the biased version will perform better in extremely high dimensions. After the convergence of
the biased algorithm, we can further fine-tune it using the unbiased algorithm.

In summary, our guidelines for empirical evaluations based on the theoretical analysis are given as follows. In
lower dimensions, where the unbiased version exhibits lower variance, its unbiased nature is crucial, allowing for
a direct application of the unbiased version. However, in higher dimensions, utilizing the unbiased version directly
introduces significant variance, impeding convergence. Therefore, we employ the biased version initially to converge
to a reasonably good position and subsequently fine-tune with the unbiased version.

4.5 Implementation Improvement
Here, we conduct an analysis of He et al.’s [14] approach to implementing randomized smoothing in order to identify
its limitations. Subsequently, we propose two more accurate and lower-variance implementations.

Suppose that we would like to implement the second-order derivatives and the network includes both t and x for
time-dependent PDEs

u(x, t) = Eδx∼N (0,σ2
xI)

Eδt∼N (0,σ2
t I)

[f(x+ δx, t+ δt)] , (26)

where we randomly smooth x and t using Gaussian with different variance for model flexibility. He et al. [14]
implement the randomized smoothing model’s derivatives as

Hxu(x, t) = Eδx∼N (0,σ2
xI)

Eδt∼N (0,σ2
t I)

[
δxδ

T
x − σ2

xI

2σ4
x

(f(x+ δx, t+ δt) + f(x− δx, t− δt)− 2f(x, t))

]
.

(27)
However, here we are taking the derivative with respect to x, with no relation to t. Nevertheless, the focus has also
shifted to t, thereby increasing the variance and impeding convergence.

The correct approach should treat x and t as independent variables:

Hxu(x, t) = Eδx∼N (0,σ2
xI)

[
δxδ

T
x − σ2

xI

2σ4
x

Eδt∼N (0,σ2
t I)

[f(x+ δx, t+ δt) + f(x− δx, t+ δt)− 2f(x, t+ δt)]

]
= Eδx∼N (0,σ2

xI)
Eδt∼N (0,σ2

t I)

[
δxδ

T
x − σ2

xI

2σ4
x

(f(x+ δx, t+ δt) + f(x− δx, t+ δt)− 2f(x, t+ δt))

]
.

(28)
Another valid implementation approach is to treat x and t as a unified entity and apply the same Gaussian noise
smoothing. Then, based on the index, select the model’s derivatives concerning both x and t. However, this method
compromises the model’s flexibility since the PDE exhibits an asymmetry between x and t. Therefore, a more
reasonable approach is to model them separately.

5 Computational Experiments
In our computational experiments, for linear equations (Fokker-Planck PDEs in Subsection 5.1), we will use “biased”
to denote the biased version and “unbiased” to denote the unbiased version by correcting the bias from the MSE loss.
For nonlinear PDEs in the rest of the subsections, we will use “biased” as before, and “unbiased1” to denote the
unbiased version by correcting the bias from the MSE loss solely, and “unbiased2” to denote the unbiased version by
correcting the two biases from the MSE loss and the PDE nonlinearity. The detailed mathematical formulas for the
losses are presented in Appendix B.

7

5.1 Isotropic and Anisotropic Linear Fokker-Planck PDEs
The isotropic linear Fokker-Planck (heat) PDE is

ut =
1

2
∆xu−

d∑
i=1

uxi
. x ∈ Rd, t ∈ [0, 1].

u(x, t = 0) = ∥x∥2. x ∈ Rd,

(29)

associated with the initial condition at t = 0. Its exact solution is

u(x, t) = ∥x− t∥2 + dt. (30)

Since this PDE corresponds to a Brownian motion with shift, We sample training residual points and test points based
on the SDE trajectory:

t ∼ Unif(0, 1),x ∼ N (t, 2− t). (31)

The anisotropic linear Fokker-Planck (heat) PDE is

ut =
1

2
∆xu−

d∑
i=1

µiuxi . x ∈ Rd, t ∈ [0, 1].

u(x, t = 0) = ∥x∥2. x ∈ Rd,

(32)

associated with an initial condition at t = 0. Its solution is

u(x, t) = ∥x− µt∥2 + dt, (33)

where µi ∼ N (1, 1) for all dimensions i and µ ∈ Rd. This example is designed to show that RS-PINN can deal with
anisotropic problems. Since this PDE corresponds to a Brownian motion with shift, We sample training residual points
and test points based on the SDE trajectory:

t ∼ Unif(0, 1),x ∼ N (µt, (2− t) · Id×d). (34)

For both isotropic and anisotropic FP PDEs, we randomly sample 100 residual points at each iteration and 20K
fixed test points based on the SDE trajectory. The sample size in the RS-PINN is K = 1024, and the variance of
Gaussian noise is σ = 1e− 2, with a backbone network with 4 layers and 128 hidden units, which is trained by an
Adam optimizer [27] with 1e-3 (10, 100, 1K dimension) or 1e-4 (10K dimension) initial learning rate which decays
exponentially with coefficient 0.9995 for 10K epochs. We use the boundary augmentation given by the following
model output to satisfy the initial condition automatically [29]:

uRS
θ (x) = uθ(x, t)t+ ∥x∥2, (35)

where uθ(x) is the randomized smoothing neural network and uRS
θ (x) is the boundary-augmented model. We repeat

our experiment 5 times with 5 independent random seeds. We test RS-PINN with biased, unbiased, and hybrid versions
for the 10, 100, 1K, and 10K-dimensional cases. For the hybrid version in the isotropic problem, the transition from
the biased version to the unbiased one happens in the 1500th, 1500th, 6000th, and 6000th epochs for the 10, 100, 1K,
and 10K dimensional PDEs, respectively. For the hybrid version in the anisotropic problem, the transition from the
biased version to the unbiased one happens in the 1000th, 500th, 1000th, 2000th, 6000th, and 8000th epochs for the 10,
100, 250, 500, 1K, and 10K dimensional PDEs, respectively. The transition is chosen by the time when the loss of the
biased algorithm ceases to decrease further.

Isotropic FP 101D 102D 103D 104D
Biased 3.846E-3 2.367E-2 1.057E-2 8.597E-3

Unbiased 2.244E-3 6.576E-3 1.047E-2 1.197E-2
Hybrid 2.238E-3 6.561E-3 1.046E-2 7.507E-3

Table 1: Results for the isotropic FP PDE.

The numerical results for the isotropic FP PDE are shown in Table 1, and Figure 1 shows convergence curves with
respect to the epoch (first row) and the running time (second row). Here is the summary of the results:

8

• In lower dimension (10D, 102D), the unbiased version is much better than the biased version in He et al. [14]
since the variance of sampling is lower in lower dimensions where the dimensionality of the samples is low,
given that the main bottleneck of the unbiased version is the relatively larger variance compared to the biased
version of RS-PINN.

• However, as the dimensions goes higher (103D, 104D), the biased version gets better, i.e., the unbiased version
encounters huge variance in higher dimensions, whose disadvantages outweigh its benefit of unbiasedness.

• In 101, 102, 103D, the hybrid version is as good as the unbiased version.

• In 104D, the hybrid version converges well by applying the biased version first to get a relatively good
convergence point, then the unbiased version is used for finetuning and gets an even better result.

• In 104D, directly applying the unbiased version will lead to huge variances preventing convergence.

0 2000 4000 6000 8000 10000
Epoch

10 2

10 1

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Isotropic Linear FP PDE dim=10
biased
unbiased
hybrid

0 2000 4000 6000 8000 10000
Epoch

10 2

10 1

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Isotropic Linear FP PDE dim=100
biased
unbiased
hybrid

0 2000 4000 6000 8000 10000
Epoch

10 2

10 1

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Isotropic Linear FP PDE dim=1000
biased
unbiased
hybrid

0 2000 4000 6000 8000 10000
Epoch

10 2

10 1

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Isotropic Linear FP PDE dim=10000
biased
unbiased
hybrid

0 100 200 300 400 500 600
Time (second)

10 2

10 1

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Isotropic Linear FP PDE dim=10
biased
unbiased
hybrid

0 100 200 300 400 500 600 700
Time (second)

10 2

10 1

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Isotropic Linear FP PDE dim=100
biased
unbiased
hybrid

0 200 400 600 800
Time (second)

10 2

10 1

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Isotropic Linear FP PDE dim=1000
biased
unbiased
hybrid

0 1000 2000 3000 4000 5000 6000
Time (second)

10 2

10 1

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Isotropic Linear FP PDE dim=10000
biased
unbiased
hybrid

Figure 1: Isotropic FP PDE: 101, 102, 103, and 104D convergence curves with respect to the epoch (first row) and
the running time (second row). In 101, 102, and 103D, the unbiased version is better than the biased version since the
sampling variance is lower in lower dimensions where the dimensionality of the samples is low. Thus, the hybrid
method is as good as the unbiased version thanks to the unbiased training at the second training stage and is faster
than the unbiased version thanks to the biased pretraining at the early training phase. In 104D, the hybrid version
converges well by applying the biased version first; then, the unbiased version is used for finetuning and getting an
even more stable final convergence result. Solely applying the unbiased version will lead to huge variances preventing
convergence.

The results for the anisotropic FP PDE are shown in Table 2 while the convergence curves and loss records for
the highest 104D are shown in Figure 2. We can still observe the advantages of the unbiased version in relatively
lower dimensions, and as the dimensionality increases, the biased version gradually outperforms the unbiased version.
This is primarily due to the increase in variance for the unbiased version, particularly in extremely high dimensions.
Notably, the results obtained by the RS-PINN remain quite stable across different dimensions, demonstrating its ability
to address the dimensionality curse. Furthermore, RS-PINN exhibits competence in handling anisotropic problems.
The convergence curves in the 10,000-dimensional space suggest that, after convergence is achieved with the biased
version, fine-tuning with the unbiased version can lead to even better and more stable results, ultimately causing the
hybrid method to outperform the rest.

Anisotropic Linear Heat 10D 100D 250D 500D 1,000D 10,000D
Biased 5.611E-02 4.452E-02 2.827E-02 1.935E-02 1.251E-02 1.389E-02

Unbiased 1.043E-02 1.215E-02 1.986E-02 1.846E-02 1.657E-02 4.036E-02
Hybrid 1.039E-02 1.211E-02 1.979E-02 1.840E-02 1.245E-02 1.342E-02

Table 2: Results for the anisotropic FP PDE.

5.2 Hamilton-Jacobi-Bellman PDEs
This section delves into the Hamilton-Jacobi-Bellman (HJB) equation, which is widely used in optimal control
problems. The nonlinearity inherent in the HJB equation introduces two biases in RS-PINN. We will demonstrate

9

0 2000 4000 6000 8000 10000
Epoch

107

108

Tr
ai

n
Re

sid
ua

l L
os

s

Anisotropic Linear FP PDE dim=10000
biased
unbiased
hybrid

0 2000 4000 6000 8000 10000
Epoch

10 1

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Anisotropic Linear FP PDE dim=10000
biased
unbiased
hybrid

0 1000 2000 3000 4000 5000 6000
Time (second)

10 1

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Anisotropic Linear FP PDE dim=10000
biased
unbiased
hybrid

Figure 2: Anisotropic FP PDE: 104D convergence curves with respect to the epoch (left) and time (right). The hybrid
version converges well by applying the biased version first; then, the unbiased version is used for finetuning and
getting an even more stable final convergence result. Solely applying the unbiased version will lead to huge variances
preventing convergence.

the remarkable performance of the model after correcting these two biases. Correcting only one bias or adopting a
completely biased approach yields suboptimal results. Additionally, we consider two different solutions to showcase
the model’s versatility.

Specifically, we consider the HJB equation with linear-quadratic-Gaussian (LQG) control:

∂tu(x, t) + ∆xu(x, t)− ∥∇xu(x, t)∥2 = 0, x ∈ Rd, t ∈ [0, T]

u(x, T) = g(x),
(36)

where g(x) is the terminal condition to be chosen, the PDE has the solution that can be simulated by Monte Carlo for
benchmarking over various initial conditions and dimensions:

u(x, t) = − log

(∫
Rd

(2π)−d/2 exp(−∥y∥2/2) exp(−g(x−
√

2(1− t)y))dy

)
. (37)

We choose the following cost functions as the terminal conditions:

• Quadratic cost:

g(x) = ∥x∥2. u(x, t) =
∥x∥2

1 + 4(T − t)
+

d

2
log(1 + 4(T − t)). (38)

Here, the solution can be obtained analytically.

• Anisotropic Rosenbrock function:

g(x) =

d/2∑
i=1

[
c1,i(x2i−1 − x2i)

2 + c2,ix
2
2i

]
, (39)

where c1,i, c2,i ∼ Unif[0, 1] and Monte Carlo is required for simulating the exact solution. We use 105 samples
for Monte Carlo.

Here is the implementation detail. For all three HJB equations, we randomly sample 1K residual points at each iteration
and 20K fixed test points based on the distributions t ∼ Unif[0, 1],x ∼ N (0, Id×d). The sample sizes in the RS-PINN
is K = 1024 for training and K = 128 for testing, and the variance of Gaussian noise is σ = 1e− 2, with a backbone
network with 4 layers and 128 hidden units, which is trained by an Adam optimizer [27] with 1e-3 initial learning rate
which decays exponentially with coefficient 0.9995 for 10K epochs. We use the boundary augmentation given by the
following model output to satisfy the terminal condition automatically [29]:

uRS
θ (x) = uθ(x, t)t+ g(x), (40)

where uθ(x) is the randomized smoothing neural network and uRS
θ (x) is the boundary-augmented model. We repeat

our experiment 5 times with 5 independent random seeds.
The computational results for the three HJB equations are shown in Table 3, and the convergence curves for HJB

with quadratic cost are shown in Figure 3.

10

HJB (Quadratic Cost) 10D 20D 30D 40D
Biased 7.423E-2 1.882E-1 2.486E-1 3.628E-1

Unbiased1 3.896E-2 1.281E-1 2.332E-1 3.204E-1
Unbiased2 1.415E-2 2.572E-2 2.644E-2 4.223E-2

HJB (Anisotropic Cost) 10D 20D 30D 40D
Biased 9.361E-2 1.820E-1 3.305E-1 3.998E-1

Unbiased1 7.783E-2 2.058E-1 3.652E-1 4.379E-1
Unbiased2 6.909E-2 6.137E-2 1.112E-1 1.417E-1

Table 3: Results for the HJB equation: Unbiased2 that corrects all the biases from the mean square error loss function
and the PDE nonlinearity performs the best in all dimensions and in different settings with various cost functions.

In most cases of the HJB equation, the model that corrects both biases (unbiased2) performs the best. Following
this, the model that corrects one bias in the MSE loss function (unbiased1) shows the next best performance, while the
completely biased model performs the worst. This highlights the correctness of our analysis regarding the two biases
introduced by analyzing nonlinear equations and underscores the improvement achieved by bias correction. These HJB
equations are not particularly high-dimensional, so our theoretical analysis suggests that using the unbiased version in
this scenario is better than the biased one. This is because the former’s variance won’t be substantial in cases that are
not highly dimensional. Lastly, this problem is difficult because we do not have a boundary condition but deal with the
unbounded domain, and the PDE solution quickly diverges to infinity when x tends to infinity, which makes the model
lack information at infinity. Efficient PINN-based algorithms for such HJB equation on unbounded domains are still
open questions in the literature. Here, we focus on comparing the performances of the biased and unbiased versions.

0 2000 4000 6000 8000 10000
Epoch

10 1

100

Te
st

 R
el

at
iv

e
L2

 E
rro

r

HJB with Quadratic Cost dim=10
biased
unbiased1
unbiased2

0 2000 4000 6000 8000 10000
Epoch

10 1

100

Te
st

 R
el

at
iv

e
L2

 E
rro

r

HJB with Quadratic Cost dim=20
biased
unbiased1
unbiased2

0 2000 4000 6000 8000 10000
Epoch

10 1

100

Te
st

 R
el

at
iv

e
L2

 E
rro

r

HJB with Quadratic Cost dim=30
biased
unbiased1
unbiased2

0 2000 4000 6000 8000 10000
Epoch

10 1

100

Te
st

 R
el

at
iv

e
L2

 E
rro

r

HJB with Quadratic Cost dim=40
biased
unbiased1
unbiased2

0 2000 4000 6000 8000 10000
Epoch

10 1

Te
st

 R
el

at
iv

e
L2

 E
rro

r

HJB with Anisotropic Cost dim=10
biased
unbiased1
unbiased2

0 2000 4000 6000 8000 10000
Epoch

10 1

Te
st

 R
el

at
iv

e
L2

 E
rro

r

HJB with Anisotropic Cost dim=20
biased
unbiased1
unbiased2

0 2000 4000 6000 8000 10000
Epoch

10 1

2 × 10 1

3 × 10 1

4 × 10 1

Te
st

 R
el

at
iv

e
L2

 E
rro

r

HJB with Anisotropic Cost dim=30

biased
unbiased1
unbiased2

0 2000 4000 6000 8000 10000
Epoch

2 × 10 1

3 × 10 1

4 × 10 1

Te
st

 R
el

at
iv

e
L2

 E
rro

r

HJB with Anisotropic Cost dim=40

biased
unbiased1
unbiased2

Figure 3: Fisrt row: results for the HJB equation with quadratic cost. Second row: results for the HJB equation with
anisotropic Rosenbrock cost. In all dimensions of the HJB equation, the model that corrects both biases (unbiased2)
performs the best. Following this, the model that corrects one bias (unbiased1) shows the next best performance, while
the completely biased model performs the worst. This highlights the correctness of our analysis regarding the two
biases introduced by analyzing nonlinear equations and underscores the improvement achieved by bias correction.

5.3 Viscous Burgers’ PDE
In this section, we investigate the nonlinear viscous Burgers’ equation. We focus on the influence of different
nonlinearities on the biases introduced to RS-PINN.

The d-dimensional viscous Burgers‘ equation with the initial condition at t = 0 is given by

ut + u

(
d∑

i=1

∂u(x)

∂xi

)
− ν

(
d∑

i=1

∂2u(x)

∂x2
i

)
= 0,x ∈ Rd, t ∈ [0, 1].

u(x, t = 0) =
1

1 + exp
(∑d

i=1 xi

2ν

) . (41)

11

Its analytical solution is given by

u(x, t) =
1

1 + exp
(∑d

i=1 xi−dt/2

2ν

) . (42)

We choose ν = 0.5 and sample points based on its corresponding SDE trajectory as before: t ∼ Unif(0, 1),x ∼
N (t, 2− t). We use the boundary augmentation given by the following model output to satisfy the initial condition
automatically [29]:

uθ(x, t)t+
1

1 + exp
(∑d

i=1 xi

2ν

) . (43)

The solution of this Burgers’ equation is highly complex and exhibits stiff regions where
∑d

i=1 xi = dt. In these
regions, the PDE solution experiences abrupt changes. This equation helps us evaluate the performance of RS-PINN
on nonlinear equations with complex stiff solutions.

Here are the implementation details. The model is a 4-layer fully connected network with 128 hidden units,
which is trained via Adam [27] for 10K epochs, with an initial learning rate 1e-3, which linearly exponentially with
exponent 0.9995. We select 100 random residual points at each Adam epoch and 20K fixed testing points from the
SDE trajectory. The sample sizes for randomized smoothing in both training and testing are 1024 and 128, respectively,
and the variance of Gaussian noise is σ = 1e− 2.

Viscous Burgers’ Equation 5D 10D 20D 25D
Biased 1.085E-02 5.293E-02 7.672E-02 5.698E-02

Unbiased1 1.089E-03 2.412E-03 1.497E-02 2.841E-02
Unbiased2 1.030E-03 2.411E-03 1.165E-02 2.783E-02

Table 4: Results for the viscous Burgers’ equation.

0 2000 4000 6000 8000 10000
Epoch

10 3

10 2

10 1

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Burgers dim=5
biased
unbiased1
unbiased2

0 2000 4000 6000 8000 10000
Epoch

10 2

10 1

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Burgers dim=10
biased
unbiased1
unbiased2

0 2000 4000 6000 8000 10000
Epoch

10 2

10 1

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Burgers dim=20
biased
unbiased1
unbiased2

0 2000 4000 6000 8000 10000
Epoch

10 1

100

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Burgers dim=25
biased
unbiased1
unbiased2

Figure 4: Convergence curves for the Burgers’ equation. In this example, correcting the bias from the MSE loss
(unbiased1) suffices to achieve optimal performance, while the unbiased2 method can only slightly improve over the
unbiased1 method.

The results for the viscous Burgers’ equation are shown in Table 4, and convergence curves with respect to epoch
are shown in Figure 4. In all-dimensional cases in this example, unbiased1 and unbiased2 consistently outperform
biased, underscoring once again the critical significance of unbiasedness for the convergence of RS-PINN. However, in
contrast to the previous HJB equation case, unbiased1 alone is sufficient to achieve excellent results here, rendering
unbiased2 unnecessary. Hence, the effect of bias-variance trade-off differs in various PDEs.

5.4 Allen-Cahn and Sine-Gordon PDEs with Anisotropic Solution
Here, we aim to consider nonseparable and anisotropic solutions for nonlinear PDEs to form complicated and nontrivial
high-dimensional PDEs:

uexact(x) =
(
1− ∥x∥22

)(d−1∑
i=1

ci sin(xi + cos(xi+1) + xi+1 cos(xi))

)
, (44)

where ci ∼ N (0, 1). We do not want the boundary to leak most information about the exact solution, and thus, the
term 1− ∥x∥22 is added for a zero boundary condition. In addition to the exact solution, the following PDEs defined
within the unit ball Bd associated with zero boundary conditions on the unit sphere are under consideration:

12

Sine-Gordon 10D 100D 10,00D
biased 5.712E-3 7.835E-3 6.744E-4

unbiased1 1.410E-3 7.223E-3 6.647E-3
unbiased2 N.A. N.A. N.A.

hybrid 1.407E-3 7.209E-3 4.732E-4

Allen-Cahn 10D 100D 10,00D
biased 5.062E-3 7.923E-3 5.504E-4

unbiased1 3.233E-3 7.298E-3 1.308E-3
unbiased2 3.217E-3 7.293E-3 1.957E-2

hybrid 2.768E-3 7.285E-3 4.856E-4

Table 5: Results for the Sine-Gordon PDE (first row) and the Allen-Cahn PDE (second row) with anisotropic exact
solutions. Note that since the Sine-Gordon contains a sine nonlinearity, its unbiased2 version does not exist.

• Allen-Cahn equation
∆u(x) + u(x)− u(x)3 = g(x), x ∈ Bd, (45)

where g(x) = ∆uexact(x) + uexact(x)− uexact(x)
3.

• Sine-Gordon equation
∆u(x) + sin (u(x)) = g(x), x ∈ Bd, (46)

where g(x) = ∆uexact(x) + sin (uexact(x)).

These PDEs exhibit different levels of nonlinearity. Allen-Cahn involves third-order nonlinearity, and Sine-Gordon’s
nonlinearity stems from the term sin(u), making it infinite-order nonlinear in theory. It is not feasible to achieve a
completely unbiased version for this case. However, we will demonstrate that correcting the bias originating from the
mean square error loss in the PINN loss is sufficient.

Here are the implementation details. The model is a 4-layer fully connected network with 128 hidden units, which
is trained via Adam [27] for 10K epochs, with an initial learning rate 1e-3, which linearly decays to zero at the end of
the optimization. We select 100 random residual points at each Adam epoch and 20K fixed testing points uniformly
from the unit ball. The sample size for randomized smoothing in both training and testing is 128, and the variance of
Gaussian noise is σ = 1e− 2. We adopt the following model structure to satisfy the zero boundary condition with
hard constraint and to avoid the boundary loss [29]:

uRS
θ (x) = (1− ∥x∥22)uθ(x), (47)

where uθ(x) is the randomized smoothing neural network and uRS
θ (x) is the boundary-augmented model. We repeat

our experiment 5 times with 5 independent random seeds.

0 2000 4000 6000 8000 10000
Epoch

10 3

10 2

10 1

100

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Sine-Gordon PDE dim=10
biased
unbiased1
hybrid

0 2000 4000 6000 8000 10000
Epoch

10 2

10 1

100

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Sine-Gordon PDE dim=100
biased
unbiased1
hybrid

0 2000 4000 6000 8000 10000
Epoch

10 3

10 2

10 1

100

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Sine-Gordon PDE dim=1000
biased
unbiased1
hybrid

0 2000 4000 6000 8000 10000
Epoch

10 2

10 1

100

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Allen-Cahn PDE dim=10
biased
unbiased1
unbiased2
hybrid

0 2000 4000 6000 8000 10000
Epoch

10 2

10 1

100

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Allen-Cahn PDE dim=100
biased
unbiased1
unbiased2
hybrid

0 2000 4000 6000 8000 10000
Epoch

10 3

10 2

10 1

100

Te
st

 R
el

at
iv

e
L2

 E
rro

r

Allen-Cahn PDE dim=1000
biased
unbiased1
unbiased2
hybrid

Figure 5: Results for the Sine-Gordon PDE (first row) and the Allen-Cahn PDE (second row) with anisotropic exact
solutions.

The final convergence results and the convergence curves are shown in Table 5 and Figure 5, respectively. Overall,
RS-PINN is able to deal with highly complicated and anisotropic PDE solutions in high dimensions. In terms of the
comparison between the biased, unbiased, and hybrid versions of RS-PINN, we obtain similar observations as the first
linear Fokker-Planck equation. Concretely, in the relatively lower 10D scenarios, unbiased versions surpass the biased

13

version, primarily because at lower dimensions, the smaller variance of the unbiased version makes its unbiasedness
more crucial for convergence. However, in 100D, the relatively larger variance of the unbiased version balances its
negative effects with the positive aspects of its unbiasedness, resulting in similar performances between unbiased and
biased versions. Moving to higher dimensions, particularly in the 1000D scenario, the considerable variance of the
unbiased version prevents its convergence. Additionally, in the Allen-Cahn equation, unbiased2, with its amplified
variance due to increased sampling, performs worse than unbiased1 with relatively less sampling. In this context,
the hybrid version, starting with the biased version to reach an acceptable solution and fine-tuning with unbiased2,
achieves the optimal outcome. Among all the dimensions, the hybrid version is the most stable, since it incorporates
the low variance of the biased version with the optimal convergence results by unbiased version-based fine-tuning.

6 Summary
We have developed an extension of Physics-Informed Neural Networks (PINNs) and their Randomized Smoothing
variant (RS-PINN) to address computational challenges in high-dimensional scenarios. The identified biases in
RS-PINN, originating from the nonlinearity of the Mean Squared Error (MSE) loss and the inherent nonlinearity of
the PDE, have been systematically corrected using tailored techniques. The derivation of an unbiased RS-PINN has
allowed us to investigate its attributes, comparing them with the biased version and paving the way for the formulation
of a novel combined hybrid approach.

Our proposed bias-variance trade-off strategy, incorporating both biased and unbiased versions, introduces a novel
perspective on optimizing simultaneously convergence speed and accuracy. By strategically employing the rapid
convergence of the biased version in the initial stages and transitioning to the accuracy of the unbiased version for
fine-tuning, we strike a balance that adapts to the dynamic nature of the optimization process.

This work contributes not only to the advancement of RS-PINN methodology but also provides a new paradigm
to address biases in high-dimensional scenarios. The presented guidelines offer practical insights for navigating the
complexities of biased and unbiased RS-PINN implementations. The extensive experimental validation across various
high-dimensional PDEs underscores the efficacy of our bias correction techniques, reinforcing the versatility and
applicability of the hybrid RS-PINN approach.

Acknowledgement
This research of ZH, ZY, YW, and KK is partially supported by the National Research Foundation Singapore under the
AI Singapore Programme (AISG Award No: AISG2-TC-2023-010-SGIL) and the Singapore Ministry of Education
Academic Research Fund Tier 1 (Award No: T1 251RES2207). The work of GEK was supported by the MURI-AFOSR
FA9550-20-1-0358 projects and by the DOE SEA-CROGS project (DE-SC0023191). GEK was also supported by the
ONR Vannevar Bush Faculty Fellowship (N00014-22-1-2795).

14

A Proof

A.1 Proof of Theorem 4.1
Proof. Thanks to the independence between the random variables δi and δ′i

Eδ,δ′

[
L
(1)
b (θ)

]
= Eδ,δ′

[(
1

K

K∑
i=1

f(x+ δ′i; θ)− g(x)

)(
1

K

K∑
i=1

f(x+ δi; θ)− g(x)

)]

= Eδ′

[(
1

K

K∑
i=1

f(x+ δ′i; θ)− g(x)

)]
· Eδ

[(
1

K

K∑
i=1

f(x+ δi; θ)− g(x)

)]

=

(
Eδ′

[
1

K

K∑
i=1

f(x+ δ′i; θ)

]
− g(x)

)
·

(
Eδ

[
1

K

K∑
i=1

f(x+ δi; θ)

]
− g(x)

)
= (Eδ [f(x+ δ; θ)]− g(x)) · (Eδ [f(x+ δ; θ)]− g(x))

= Lb(θ).

(48)

For their gradients with respect to θ, by the chain rule

Eδ,δ′

[
∂L

(1)
b (θ)

∂θ

]
= 2Eδ,δ′

[(
1

K

K∑
i=1

f(x+ δ′; θ)− g(x)

)
· ∂

∂θ

(
1

K

K∑
i=1

f(x+ δi; θ)− g(x)

)]

= 2Eδ′

[(
1

K

K∑
i=1

f(x+ δ′i; θ)− g(x)

)]
· Eδ

[
∂

∂θ

(
1

K

K∑
i=1

f(x+ δi; θ)− g(x)

)]

= 2Eδ [(f(x+ δ; θ)− g(x))] · Eδ

[
∂

∂θ
(f(x+ δ; θ)− g(x))

]
= Eδ

[
∂

∂θ
(f(x+ δ; θ)− g(x))

2

]
=

∂Lb(θ)

∂θ
.

(49)

A.2 Proof of Theorem 4.2
Proof.

Eδ,δ′,δ′′,δ′′′

[
L(2)
r (θ)

]
=

(〈
Eδ

[
1

K

K∑
i=1

δi
σ2

f(x+ δi; θ)

]
,Eδ′

[
1

K

K∑
i=1

δ′i
σ2

f(x+ δ′i; θ)

]〉
− g(x)

)
×(〈

Eδ′′

[
1

K

K∑
i=1

δ′′i
σ2

f(x+ δ′′i ; θ)

]
,Eδ′′′

[
1

K

K∑
i=1

δ′′′i
σ2

f(x+ δ′′′i ; θ)

]〉
− g(x)

)

=

(〈
Eδ

[
δ

σ2
f(x+ δ; θ)

]
,Eδ

[
δ

σ2
f(x+ δ; θ)

]〉
− g(x)

)
×(〈

Eδ

[
δ

σ2
f(x+ δ; θ)

]
,Eδ

[
δ

σ2
f(x+ δ; θ)

]〉
− g(x)

)
= Lr(θ).

(50)

15

Eδ,δ′,δ′′,δ′′′

[
∂

∂θ
L(2)
r (θ)

]
= 2

(〈
Eδ

[
1

K

K∑
i=1

δi
σ2

f(x+ δi; θ)

]
,Eδ′

[
1

K

K∑
i=1

δ′i
σ2

f(x+ δ′i; θ)

]〉
− g(x)

)
×

∂

∂θ

(〈
Eδ′′

[
1

K

K∑
i=1

δ′′i
σ2

f(x+ δ′′i ; θ)

]
,Eδ′′′

[
1

K

K∑
i=1

δ′′′i
σ2

f(x+ δ′′′i ; θ)

]〉
− g(x)

)

= 2

(〈
Eδ

[
δ

σ2
f(x+ δ; θ)

]
,Eδ

[
δ

σ2
f(x+ δ; θ)

]〉
− g(x)

)
×

∂

∂θ

(〈
Eδ

[
δ

σ2
f(x+ δ; θ)

]
,Eδ

[
δ

σ2
f(x+ δ; θ)

]〉
− g(x)

)
=

∂

∂θ
Lr(θ).

(51)

B Detailed Loss Function

B.1 Hamilton-Jacobi-Bellman PDE
The previous HJB equation given by

ut = ∆xu− ∥∇xu(x)∥2. (52)

which has a nonlinearity order of two due to the ∥∇xu∥2 term.
As before, to simplify the discussion, we assume the residual condition is g(x), and we ignore the linear term of the

HJB equation and only consider the nonlinear term: ∥∇xu(x)∥2. Recall that ∇xu(x; θ) = Eδ∼N (0,σ2I)

[
δ
σ2 f(x+ δ; θ)

]
.

The true residual loss on a residual point x is:

Lr(θ) =
(
∥∇xu(x; θ)∥2 − g(x)

)2
(53)

The biased loss from He et al. [14] is

L(0)
r (θ) =

∥∥∥∥∥ 1

K

K∑
i=1

δi
σ2

f(x+ δi; θ)

∥∥∥∥∥
2

− g(x)

2

. (54)

The unbiased1 loss by correcting the bias from the nonlinear MSE loss solely is

L(1)
r (θ) =

∥∥∥∥∥ 1

K

K∑
i=1

δi
σ2

f(x+ δi; θ)

∥∥∥∥∥
2

− g(x)

×

∥∥∥∥∥ 1

K

K∑
i=1

δ′i
σ2

f(x+ δ′i; θ)

∥∥∥∥∥
2

− g(x)

 . (55)

The unbiased2 loss by correcting the biases from the MSE loss and the PDE nonlinearity is

L(2)
r (θ) =

(〈
1

K

K∑
i=1

δi
σ2

f(x+ δi; θ),
1

K

K∑
i=1

δ′i
σ2

f(x+ δ′i; θ)

〉
− g(x)

)
×(〈

1

K

K∑
i=1

δ′′i
σ2

f(x+ δ′′i ; θ),
1

K

K∑
i=1

δ′′′i
σ2

f(x+ δ′′′i ; θ)

〉
− g(x)

)
.

(56)

B.2 Allen-Cahn PDE
For the Allen-Cahn (AC) PDE given by

ut = ∆xu+ u− u3, (57)

its nonlinearity stems from the term u3, which is a cubic function. Therefore, the nonlinearity order of the AC equation
is three. During the model training, we are required to sample the three u terms in u3 = u · u · u independently for
unbiased gradients.

As before, to simplify the discussion, we assume the residual condition is g(x), and we ignore the linear term of
the HJB equation and only consider the nonlinear term: u3,. Recall that u(x; θ) = Eδ∼N (0,σ2I) [f(x+ δ; θ)] .

16

The true residual loss on a residual point x is:

Lr(θ) =
(
u(x; θ)3 − g(x)

)2
(58)

The biased loss from He et al. [14] is

L(0)
r (θ) =

(1

K

K∑
i=1

f(x+ δi; θ)

)3

− g(x)

2

. (59)

The unbiased1 loss by correcting the bias from the nonlinear MSE loss solely is

L(1)
r (θ) =

(1

K

K∑
i=1

f(x+ δi; θ)

)3

− g(x)

×

(1

K

K∑
i=1

f(x+ δ′i; θ)

)3

− g(x)

 . (60)

The unbiased2 loss by correcting the biases from the MSE loss and the PDE nonlinearity is

L(2)
r (θ) =

((
1

K

K∑
i=1

f(x+ δ
(1)
i ; θ)

)(
1

K

K∑
i=1

f(x+ δ
(2)
i ; θ)

)(
1

K

K∑
i=1

f(x+ δ
(3)
i ; θ)

)
− g(x)

)
×((

1

K

K∑
i=1

f(x+ δ
(4)
i ; θ)

)(
1

K

K∑
i=1

f(x+ δ
(5)
i ; θ)

)(
1

K

K∑
i=1

f(x+ δ
(6)
i ; θ)

)
− g(x)

)
,

(61)

where δ
(1)
i , δ

(2)
i , δ

(3)
i , δ

(4)
i , δ

(5)
i , δ

(6)
i are six independent groups of Gaussian random samples.

B.3 Viscous Burgers’ PDE
For the viscous Burgers’ equation:

ut + u

(
d∑

i=1

∂u(x)

∂xi

)
− ν

(
d∑

i=1

∂2u(x)

∂x2
i

)
= 0,x ∈ Rd, t ∈ [0, 1], (62)

its nonlinearity stems from the term u
∑d

i=1 uxi
. Therefore, the nonlinearity order of the viscous Burgers’ PDE is

three. During the model training, we are required to sample the u and ∇xu independently for unbiased gradients.
As before, to simplify the discussion, we assume the residual condition is g(x), and we ignore the linear term of

the HJB equation and only consider the nonlinear term: u
∑d

i=1 uxi
. Furthermore, we will use the operator sum to

denote the element-wise sum of a vector.
The true residual loss on a residual point x is:

Lr(θ) =

(
u(x; θ)

d∑
i=1

∂

∂xi
u(x; θ)− g(x)

)2

(63)

The biased loss from He et al. [14] is

L(0)
r (θ) =

((
1

K

K∑
i=1

f(x+ δi; θ)

)
sum

(
1

K

K∑
i=1

δi
σ2

f(x+ δi; θ)

)
− g(x)

)2

. (64)

The unbiased1 loss by correcting the bias from the nonlinear MSE loss solely is

L(1)
r (θ) =

((
1

K

K∑
i=1

f(x+ δi; θ)

)
sum

(
1

K

K∑
i=1

δi
σ2

f(x+ δi; θ)

)
− g(x)

)
×((

1

K

K∑
i=1

f(x+ δ′i; θ)

)
sum

(
1

K

K∑
i=1

δ′i
σ2

f(x+ δ′i; θ)

)
− g(x)

)
.

(65)

The unbiased2 loss by correcting the biases from the MSE loss and the PDE nonlinearity is

L(2)
r (θ) =

((
1

K

K∑
i=1

f(x+ δi; θ)

)
sum

(
1

K

K∑
i=1

δ′i
σ2

f(x+ δ′i; θ)

)
− g(x)

)
×((

1

K

K∑
i=1

f(x+ δ′′i ; θ)

)
sum

(
1

K

K∑
i=1

δ′′′i
σ2

f(x+ δ′′′i ; θ)

)
− g(x)

)
.

(66)

17

B.4 Sine-Gordon PDE
However, our method cannot deal with nonlinear like sin(u) in the Sine-Gorden PDE:

ut = ∆xu+ sin(u) (67)

However, we can increase the sample size K in the Monte Carlo to minimize the bias. Fortunately, correcting the
forward and backward bias does suffice for the Sine-Gordon equation, i.e., we can still correct the bias from the forward
and backward passes to improve over the original formulation in He et al. [14], which is actually sufficient to obtain a
low error in high dimensions.

As before, to simplify the discussion, we assume the residual condition is g(x), and we ignore the linear term of
the HJB equation and only consider the nonlinear term: sin (u(x)) .

The true residual loss on a residual point x is:

Lr(θ) = (sin (u(x; θ))− g(x))
2 (68)

The biased loss from He et al. [14] is

L(0)
r (θ) =

(
sin

(
1

K

K∑
i=1

f(x+ δi; θ)

)
− g(x)

)2

(69)

The unbiased1 loss by correcting the bias from the nonlinear MSE loss solely is

L(1)
r (θ) =

(
sin

(
1

K

K∑
i=1

f(x+ δi; θ)

)
− g(x)

)
×

(
sin

(
1

K

K∑
i=1

f(x+ δ′i; θ)

)
− g(x)

)
. (70)

The unbiased2 loss that corrects the two biases does not exist for this equation due to the sine nonlinearity.

18

References
[1] Christian Beck, Sebastian Becker, Patrick Cheridito, Arnulf Jentzen, and Ariel Neufeld. Deep splitting method

for parabolic pdes. SIAM Journal on Scientific Computing, 43(5):A3135–A3154, 2021.

[2] Christian Beck, Weinan E, and Arnulf Jentzen. Machine learning approximation algorithms for high-dimensional
fully nonlinear partial differential equations and second-order backward stochastic differential equations. Journal
of Nonlinear Science, 29:1563–1619, 2019.

[3] Christian Beck, Lukas Gonon, and Arnulf Jentzen. Overcoming the curse of dimensionality in the nu-
merical approximation of high-dimensional semilinear elliptic partial differential equations. arXiv preprint
arXiv:2003.00596, 2020.

[4] Christian Beck, Fabian Hornung, Martin Hutzenthaler, Arnulf Jentzen, and Thomas Kruse. Overcoming the
curse of dimensionality in the numerical approximation of allen–cahn partial differential equations via truncated
full-history recursive multilevel picard approximations. Journal of Numerical Mathematics, 28(4):197–222,
2020.

[5] Sebastian Becker, Ramon Braunwarth, Martin Hutzenthaler, Arnulf Jentzen, and Philippe von Wurstemberger.
Numerical simulations for full history recursive multilevel picard approximations for systems of high-dimensional
partial differential equations. arXiv preprint arXiv:2005.10206, 2020.

[6] Jesse Bettencourt, Matthew J. Johnson, and David Duvenaud. Taylor-mode automatic differentiation for higher-
order derivatives in JAX. In Program Transformations for ML Workshop at NeurIPS 2019, 2019.

[7] Quentin Chan-Wai-Nam, Joseph Mikael, and Xavier Warin. Machine learning for semi linear pdes. Journal of
scientific computing, 79(3):1667–1712, 2019.

[8] Pao-Hsiung Chiu, Jian Cheng Wong, Chinchun Ooi, My Ha Dao, and Yew-Soon Ong. Can-pinn: A fast physics-
informed neural network based on coupled-automatic–numerical differentiation method. Computer Methods in
Applied Mechanics and Engineering, 395:114909, 2022.

[9] Junwoo Cho, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun, Youngjoon Hong, and Eunbyung Park. Sep-
arable pinn: Mitigating the curse of dimensionality in physics-informed neural networks. arXiv preprint
arXiv:2211.08761, 2022.

[10] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized smoothing. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 1310–1320. PMLR, 09–15
Jun 2019.

[11] Haozhe Feng, Tianyu Pang, Chao Du, Wei Chen, Shuicheng Yan, and Min Lin. Does federated learning really
need backpropagation? arXiv preprint arXiv:2301.12195, 2023.

[12] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations using deep
learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

[13] Jiequn Han, Arnulf Jentzen, et al. Deep learning-based numerical methods for high-dimensional parabolic partial
differential equations and backward stochastic differential equations. Communications in mathematics and
statistics, 5(4):349–380, 2017.

[14] Di He, Shanda Li, Wenlei Shi, Xiaotian Gao, Jia Zhang, Jiang Bian, Liwei Wang, and Tie-Yan Liu. Learning
physics-informed neural networks without stacked back-propagation. In International Conference on Artificial
Intelligence and Statistics, pages 3034–3047. PMLR, 2023.

[15] Pierre Henry-Labordere. Deep primal-dual algorithm for bsdes: Applications of machine learning to cva and im.
Available at SSRN 3071506, 2017.

[16] Zheyuan Hu, Ameya D. Jagtap, George Em Karniadakis, and Kenji Kawaguchi. When do extended physics-
informed neural networks (xpinns) improve generalization? SIAM Journal on Scientific Computing, 44(5):A3158–
A3182, 2022.

[17] Zheyuan Hu, Khemraj Shukla, George Em Karniadakis, and Kenji Kawaguchi. Tackling the curse of dimension-
ality with physics-informed neural networks. arXiv preprint arXiv:2307.12306, 2023.

19

[18] Côme Huré, Huyên Pham, and Xavier Warin. Deep backward schemes for high-dimensional nonlinear pdes.
Mathematics of Computation, 89(324):1547–1579, 2020.

[19] Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, Tuan Anh Nguyen, and Philippe von Wurstemberger.
Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential
equations. Proceedings of the Royal Society A, 476(2244):20190630, 2020.

[20] Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, et al. Multilevel picard iterations for solving smooth
semilinear parabolic heat equations. Partial Differential Equations and Applications, 2(6):1–31, 2021.

[21] Ameya D Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adaptive activation functions accelerate
convergence in deep and physics-informed neural networks. Journal of Computational Physics, 404:109136,
2020.

[22] Shaolin Ji, Shige Peng, Ying Peng, and Xichuan Zhang. Three algorithms for solving high-dimensional fully
coupled fbsdes through deep learning. IEEE Intelligent Systems, 35(3):71–84, 2020.

[23] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-
informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

[24] Kenji Kawaguchi. Deep learning without poor local minima. In Advances in neural information processing
systems (NeurIPS), pages 586–594, 2016.

[25] Kenji Kawaguchi, Zhun Deng, Xu Ji, and Jiaoyang Huang. How does information bottleneck help deep learning?
In International Conference on Machine Learning (ICML), 2023.

[26] Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning. Cambridge
University Press, 2022.

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2015.

[28] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified robustness to
adversarial examples with differential privacy. In 2019 IEEE symposium on security and privacy (SP), pages
656–672. IEEE, 2019.

[29] Lu Lu, Raphael Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G Johnson. Physics-
informed neural networks with hard constraints for inverse design. SIAM Journal on Scientific Computing,
43(6):B1105–B1132, 2021.

[30] Chunyue Lv, Lei Wang, and Chenming Xie. A hybrid physics-informed neural network for nonlinear partial
differential equation. arXiv preprint arXiv:2112.01696, 2021.

[31] Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of physics informed neural
networks (pinns) for approximating pdes. arXiv preprint arXiv:2006.16144, 2020.

[32] Guofei Pang, Lu Lu, and George Em Karniadakis. fpinns: Fractional physics-informed neural networks. SIAM
Journal on Scientific Computing, 41(4):A2603–A2626, 2019.

[33] Maziar Raissi. Forward-backward stochastic neural networks: Deep learning of high-dimensional partial
differential equations. arXiv preprint arXiv:1804.07010, 2018.

[34] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of
Computational Physics, 378:686–707, 2019.

[35] Yeonjong Shin, Jerome Darbon, and George Em Karniadakis. On the convergence of physics informed neural
networks for linear second-order elliptic and parabolic type pdes. arXiv preprint arXiv:2004.01806, 2020.

[36] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial differential
equations. Journal of computational physics, 375:1339–1364, 2018.

[37] Chuwei Wang, Shanda Li, Di He, and Liwei Wang. Is $lˆ2$ physics informed loss always suitable for training
physics informed neural network? In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,
editors, Advances in Neural Information Processing Systems, 2022.

20

[38] Yifan Wang, Pengzhan Jin, and Hehu Xie. Tensor neural network and its numerical integration. arXiv preprint
arXiv:2207.02754, 2022.

[39] Yifan Wang, Yangfei Liao, and Hehu Xie. Solving schr\”{o} dinger equation using tensor neural network. arXiv
preprint arXiv:2209.12572, 2022.

21

	Introduction
	Related Work
	Preliminary
	Physics-Informed Neural Networks (PINNs)
	Randomized Smoothing PINNs

	Proposed Method
	Bias from the Mean Square Error Loss Function
	Bias from the PDE Nonlinearity
	General Nonlinear PDEs: Order of Nonlinearity
	Bias-Variance Trade-off and the Hybrid Method
	Implementation Improvement

	Computational Experiments
	Isotropic and Anisotropic Linear Fokker-Planck PDEs
	Hamilton-Jacobi-Bellman PDEs
	Viscous Burgers' PDE
	Allen-Cahn and Sine-Gordon PDEs with Anisotropic Solution

	Summary
	Proof
	Proof of Theorem 4.1
	Proof of Theorem 4.2

	Detailed Loss Function
	Hamilton-Jacobi-Bellman PDE
	Allen-Cahn PDE
	Viscous Burgers' PDE
	Sine-Gordon PDE

